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Exercise 1.5.6

Modify Exercise 1.5.5 if the thermal properties depend on r.

Solution

The law of conservation of energy states that energy is neither created nor destroyed. If some
amount of thermal energy enters a circular annulus at r = a, then that same amount must exit at
r = b for the temperature to remain the same. If more (less) thermal energy enters at r = a than
exits at r = b, then the amount of thermal energy in the annulus will change, leading to an
increase (decrease) in its temperature. The mathematical expression for this idea, an energy
balance, is as follows.

rate of energy in− rate of energy out = rate of energy accumulation

Figure 1: This is a schematic of the circular annulus that the thermal energy flows through. It
flows in at r = a and out at r = b.

Normally the flux is defined to be the rate that thermal energy flows per unit area, but since we
are in two dimensions, it will be the rate that thermal energy flows per unit length. Denote it as
φ(r, t). Multiplying it by the perimeter P (r) that the energy flows through at r gives the rate of
energy flow. If we let U represent the amount of energy in the annulus, then the energy balance
over it is

P (a)φ(a, t)− P (b)φ(b, t) =
dU

dt

∣∣∣∣
annulus

.

Factor a minus sign from the left side.

−[P (b)φ(b, t)− P (a)φ(a, t)] =
dU

dt

∣∣∣∣
annulus

By the fundamental theorem of calculus, the term in square brackets is an integral.

−
ˆ b

a

∂

∂r
[P (r)φ(r, t)] dr =

dU

dt

∣∣∣∣
annulus

The thermal energy in the annulus is obtained by integrating the thermal energy density e(r, t)
over the annulus’s area A.

−
ˆ b

a

∂

∂r
[P (r)φ(r, t)] dr =

d

dt

ˆ
A
e dA
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For a nonuniform annulus with mass density ρ(r), specific heat c(r), and temperature u(r, t), the
thermal energy density is the product ρ(r)c(r)u(r, t).

−
ˆ b

a

∂

∂r
[P (r)φ(r, t)] dr =

d

dt

ˆ
A
ρ(r)c(r)u(r, t) dA

The area differential for a circle is dA = P (r) dr = 2πr dr. The area integral turns into one over
the radius.

−
ˆ b

a

∂

∂r
[2πrφ(r, t)] dr =

d

dt

ˆ b

a
ρ(r)c(r)u(r, t)(2πr dr)

Therefore, the total thermal energy in the annulus is

U = 2π

ˆ b

a
ρ(r)c(r)u(r, t)r dr.

Divide both sides of the energy balance by 2π and bring the minus sign and time derivative inside
the integrals they’re in front of.

ˆ b

a

{
− ∂

∂r
[rφ(r, t)]

}
dr =

ˆ b

a
ρ(r)c(r)

∂u

∂t
r dr

Since the two integrals are equal over the same interval of integration, the integrands must be
equal.

− ∂

∂r
[rφ(r, t)] = ρ(r)c(r)

∂u

∂t
r

According to Fourier’s law of conduction, the heat flux is proportional to the temperature
gradient.

φ = −K0(r)
∂u

∂r
,

where K0 is a proportionality constant known as the thermal conductivity. It varies as a function
of r because the annulus is nonuniform. As a result, the energy balance becomes an equation
solely for the temperature.

− ∂

∂r

[
−rK0(r)

∂u

∂r

]
= ρ(r)c(r)

∂u

∂t
r

Divide both sides by r to obtain the circularly symmetric heat equation for a nonuniform annulus.

ρ(r)c(r)
∂u

∂t
=

1

r

∂

∂r

[
rK0(r)

∂u

∂r

]
With Fourier’s law in hand, the rate of thermal energy flowing at r = a and r = b can be
calculated.

Rate of Thermal Energy Flowing at r = a: P (a)φ(a, t) = 2πa

[
−K0(a)

∂u

∂r
(a, t)

]
= −2πaK0(a)

∂u

∂r
(a, t)

Rate of Thermal Energy Flowing at r = b: P (b)φ(b, t) = 2πb

[
−K0(b)

∂u

∂r
(b, t)

]
= −2πbK0(b)

∂u

∂r
(b, t)
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